A cascade radical macrocyclisation-transannulation approach towards the construction of ring-fused tricycles and polycycles

Michael J. Begley, $\dagger^{, a}$ Gerald Pattenden, ${ }^{*, a}$ Allison Smithies, ${ }^{a}$ David
Tapolczay ${ }^{b}$ and Daryl S. Walter ${ }^{a}$
1㩕
${ }^{a}$ Department of Chemistry, Nottingham University, Nottingham NG7 2RD, UK
${ }^{b}$ Glaxo Research and Development Ltd, Stevenage, Herts SG1 2NH, UK

Treatment of the iodo trienone 6 with $\mathrm{Bu}_{3} \mathrm{SnH}$-AIBN results in the formation of the angular $5,7,5$-ringfused tricyclic ketone 20 by way of a novel sequential 13-endo-trig macrocyclisation followed by two successive 5-exo-trig transannulation processes, viz $7 \rightarrow 8 \rightarrow 18 / 19 \rightarrow 20$. The cis-anti-trans stereochemistry of 20 was established from an X-ray crystal structure determination of the corresponding 2,4dinitrophenylhydrazone. By contrast, treatment of the iodo trienone 21 with $\mathrm{Bu}_{3} \mathrm{SnH}$-AIBN, under the same conditions, led to the substituted cyclopropane 33 (instead of the hoped-for tricyclic ketone 22), and only the product 38 of macrocyclisation (without further transannulation to the triquinane 24) was produced when the iodo trienone 23 was treated similarly.

In the immediately preceding paper we introduced and discussed the origins of a unified approach to the construction of polycyclic ring systems, based on cyclisations of polyenebased radical systems, pre-organised to cyclise either via a macrocyclisation-transannulation manifold or by sequential endo-cyclisations. ${ }^{1}$ Furthermore, in the same publication we showed how the aforementioned protocol can be used as a useful stratagem in the synthesis of 5,6-, 6,6- and 5,7-fused bicycles, e.g. $\mathbf{1 \rightarrow 2} / \mathbf{3}$. In other studies we have highlighted an application of this same macrocyclisation-transannulation approach to the 8,6 -(BC)-ring system of the taxane ring system, viz $\mathbf{4} \boldsymbol{\rightarrow 5}$ (Scheme 1). ${ }^{2}$ In this paper we describe the extension of

our studies into the scope for macrocyclisation-transannulation processes in synthesis, with an investigation of the elaboration of tricyclic molecules from appropriate iodo triene precursors. ${ }^{3-5}$ In the immediately following paper we show how serial endo-cyclisations initiated from acyl radical intermediates can be applied to the facile synthesis of linear and angular fused 6,6 -systems, including steroid constructions. ${ }^{6}$
We began our investigations by first examining the radical macrocyclisation-transannulation sequence involving the iodo trienone 6. This substrate was designed, based on earlier investigations, ${ }^{1}$ to access the $6,6,5$-tricycle 9 by way of a 13 -endo-trig macrocyclisation, i.e. $\mathbf{7} \rightarrow \mathbf{8}$, followed by two successive 5-exo, 6-exo-trig transannulations (see Scheme 2).

Scheme 2
The iodo trienone 6 was synthesised by two routes and the details are summarised in Scheme 3. Thus, deprotonation of

Scheme 3 Reagents: i, NaNH_{2}, ethylene oxide (37%); ii, LiAlH_{4}, THF (98%); iii, NBS, $\mathrm{PPh}_{3}(46 \%)$; iv, Dess-Martin periodinane (96%); v, $\mathrm{CH}_{2}=\mathrm{CHMgCl}(56 \%) ;$ vi, Nal, $\mathrm{Me}_{2} \mathrm{CO}(94 \%)$; vii, $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCH}_{2} \mathrm{CH}-$ $\left(\mathrm{O}^{-}\right) \mathrm{CH}=\mathrm{CH}_{2} 17$ (75\%); viii, cyclopropyl- $\mathrm{MgBr}(81 \%)$; ix, ZnBr_{2}, $\mathrm{ZnBr}_{2}(65 \%) ; \mathrm{x}, \mathrm{PCC}(77 \%)$
hepta-1,6-diyne followed by reaction of the resulting diyne dianion with ethylene oxide first led to the diyne diol 10 in 46% yield. Reduction of $\mathbf{1 0}$ with lithium aluminium hydride next gave the E, E-diene diol 11, which was then converted into the corresponding bromo alcohol 12a on treatment with N bromosuccinimide and triphenylphosphine. The oxidation of the bromo alcohol 12a to the aldehyde 12b proceeded smoothly using periodinane, but other oxidising conditions, e.g. Swern and PCC, led to polymerisation or to products where the $\beta, \gamma-$ double bond moved into conjugation with the carbonyl function. The aldehyde 12b was next converted into the allylic alcohol 14 by treatment with vinylmagnesium chloride, which upon oxidation with periodinane provided the bromo trienone 13. Finally, a Finkelstein reaction with $\mathbf{1 3}$, using sodium iodide
in acetone, led to the E, E-iodo trienone 6. A more satisfying route to the allylic alcohol intermediate $\mathbf{1 4}$, en route to the iodo trienone 6, started from the cyclopropylmethanol product 15 resulting from treatment of γ-valerolactol with cyclopropylmagnesium bromide. Thus, treatment of the diol 15 with $\mathrm{MgBr}_{2}-$ ZnBr_{2} first gave the corresponding homoallylic bromide 16a, which was next converted into the aldehyde 16b following oxidation with pyridinium chlorochromate (PCC). A Wittig reaction between the aldehyde $\mathbf{1 6 b}$ and the phosphonium ylide 17 produced in situ from methyltriphenylphosphonium ylide and butadiene monoepoxide, ${ }^{7}$ then gave the E, E-trienol 14 in 71% yield. The trienol 14 prepared by this procedure was identical with the product produced earlier from the aldehyde 12b and vinylmagnesium chloride.

When a $3 \mathrm{mmol} \mathrm{dm}{ }^{-3}$ solution of 6 in dry degassed benzene was heated under reflux in the presence of $\mathrm{Bu}_{3} \mathrm{SnH}$ (1.1. equiv.) and a catalytic amount of AIBN for 0.5 h , work-up and chromatography led to the isolation of a single saturated ketone product in 55% yield. The saturated ketone product displayed ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectroscopic data which were consistent with the formation of a tricyclic ring system, but the data did not distinguish unambiguously between the 6,6,5and the 5,7,5-ring fused tricycles, 9 and 20, respectively. Accordingly, we prepared the crystalline 2,4-dinitrophenylhydrazone derivative of the product ketone, and determined its X-ray crystal structure. This determination established unambiguously that the tricycle produced from the cascade radical cyclisation of 6 was the cis-anti-trans 5,7,5-ring fused tricyclic ketone $20 .{ }^{3}$

The tricycle 20 is produced from 6 via a sequential 13-endotrig macrocyclisation, followed by two successive 5-exo-trig transannulation processes involving the radical intermediates 8 and $18 / 19$. We had expected that the iodo trienone 6 would undergo macrocyclisation-transannulation to give the 6,6,5tricycle 9 rather than the 5,7,5-tricycle 20. Accordingly, we carried out some MM2 studies to determine if we could learn something about this unexpected result. Before we discuss these studies however, it is instructive to summarise the outcome of the cyclisation studies we carried out with the related iodo trienones 21 and 23 with an eye to the synthesis of the corresponding 5,6,5- and 5,5,5-ring tricycles, 22 and 24 respectively.
The iodo trienones 21 and $\mathbf{2 3}$ were prepared using synthetic sequences similar to those used to synthesise the analogue 6 (see Scheme 4). To our surprise, when the iodo trienone 21 was treated with $\mathrm{Bu}_{3} \mathrm{SnH}-\mathrm{AIBN}$ (azoisobutyronitrile), instead of leading to the tricyclic ketone 22, it gave a $3: 1$ mixture of diastereoisomers of the cyclopropylcyclopentane $33(53 \%)$ in

Scheme 4 Reagents and conditions: i, $\mathrm{EtO}_{2} \mathrm{CCH}=\mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $25^{\circ} \mathrm{C}$; ii, DIBAL, $0^{\circ} \mathrm{C}$; iii, PCC; iv, $\mathrm{CH}_{2}=\mathrm{CHMgCl}$; v, Dess-Martin periodinane; vi, $\mathrm{NaI}, \mathrm{Me}_{2} \mathrm{CO}$
addition to recovered starting material (23%). The formation of 33 from 21 takes place by way of a 3-exo-trig cyclisation ${ }^{8.9}$ leading to 32 , wherein the equilibria $31 \equiv 32 \equiv 34$ are no doubt driven by a following, and rapid, 5-exo-trig cyclisation onto a reactive enone electrophore, viz $\mathbf{3 2 \rightarrow 3 3}$ (Scheme 5). To add to

Scheme 5
our surprise with system 21, when a solution of the related iodo trienone 23 in benzene was treated with $\mathrm{Bu}_{3} \mathrm{SnH}-\mathrm{AIBN}$ under the same conditions used in the conversion of $\mathbf{6}$ into 20 , the only product isolated, in a meagre 16% yield, was the macrocyclisation product cycloundeca-2,6-dienone 38 (Scheme 6).

Scheme 6
In the accompanying paper ${ }^{1}$ we described the outcome of MM2 calculations we had made in an attempt to rationalise the experimental results we observed in sequential radical macrocyclisation-transannulation reactions from iodo dienes leading to 5,5-, 5,6-, 6,6- and 5,7-ring fused carbocycles. Indeed, a reasonably satisfactory rationale of the experimental results was forthcoming from these calculations. Using the same MM2 modelling methodology described in the preceding paper, we have also been able to determine satisfactory qualitative rationalisations for the outcomes of the three attempted tricyclisations, viz. $\mathbf{6} \rightarrow \mathbf{2 0} ; \mathbf{2 1} \boldsymbol{\mathbf { 2 2 } ; \mathbf { 2 3 } \rightarrow \mathbf { 2 4 } \text { , summarised in }}$ the present paper. Thus, calculations relating to the transition state energies for the two transannulations involved in the conversion of the iodo trienone 6 into the tricyclic ketone 9 showed favourable agreement (Fig. 1). The first 5 -exo-trig transannulation, i.e. $\mathbf{8 \rightarrow 1 8}$, was found to have an energy of $-25.4 \mathrm{kcal} \mathrm{mol}^{-1}$, and the subsequent 6 -exo-trig cyclisation leading to the $6,6,5$-tricycle 9 was similarly favoured (-25.45 $\mathrm{kcal} \mathrm{mol}{ }^{-1}$). However, the corresponding 5 -exo-trig mode of cyclisation from 19 has a larger number of low energy

Transition state	Energy (kcal nool ${ }^{-1}$)
5-exo	-25.43
5.endo	2.90

5-exo
18

Fig. 1 Transition state energies for the transannulation cyclisations $8 \rightarrow 18 / 19 \rightarrow 9 / 20$

Fig. 2 Transition state energies for the transannulation cyclisations $\mathbf{3 4} \rightarrow \mathbf{3 5} \rightarrow \mathbf{2 2}$ and $\mathbf{3 6} \rightarrow \mathbf{3 7}$
conformations of similar energy (the lowest being -25.78 $\mathrm{kcal} \mathrm{mol}{ }^{-1}$), and is consequently favoured statistically. Hence, as borne out experimentally, the iodo trienone 6 undergoes preferential macrocyclisation-transannulation to the 5,7,5tricycle 20.
The result obtained in the attempted macrocyclisationtransannulation of the iodo trienone 21 to 22 could also be understood in terms of similar MM2 calculations. Thus, the transition state energy of $-26.73 \mathrm{kcal} \mathrm{mol}^{-1}$ in the first transannulation of this expected sequence, i.e. $\mathbf{3 4} \rightarrow \mathbf{3 5}$, is of a favourable magnitude (Fig. 2). However, the second 5-exo-trig transannulation $\mathbf{3 5} \boldsymbol{\rightarrow 2 2}$ has a considerable higher penalty $\left(-5.89 \mathrm{kcal} \mathrm{mol}^{-1}\right)$. In view of the highly favoured 5 -exo-trig cyclisation ($-53.79 \mathrm{kcal} \mathrm{mol}^{-1}$) from the alternative firstformed cyclopropylmethyl radical 32, it is perhaps not surprising therefore that the iodo trienone 21 underwent cyclisation to $\mathbf{3 3}$ in preference to $\mathbf{2 2}$ in this study. By analogy, the relatively high energy ($-15.92 \mathrm{kcal} \mathrm{mol}^{1}$) of the initial 5-exo-trig transannulation $\mathbf{3 6} \rightarrow \mathbf{3 7}$ in the attempted conversion of the iodo trienone 23 into the triquinone 24 probably also accounts for the isolation of only the macrocycle 38 in this reaction (Fig. 2).
Finally, in these particular studies we also examined the synthesis and the radical cyclisation chemistry of the all- E-iodo tetraenone 42b, as a prelude to studying the synthesis of the steroid ring system according to the principles developed earlier. The all- E-iodo tetraenone 42b was synthesised starting from the hydroxy diene 39 prepared in earlier work, and using reagents and reaction conditions already described in studies leading to the related iodo polyenones 6, 21 and 23 . These details are summarised in Scheme 7. Treatment of 42b with $\mathrm{Bu}_{3} \mathrm{SnH}-\mathrm{AIBN}$ resulted in a clean reaction but only the 17 -ring product 44 of 17 -endo-trig macrocyclisation was isolated. No evidence for the co-formation of polycyclic products resulting from subsequent radical transannulation reactions to 45,46 and 47 from the intermediate $\mathbf{4 3}$ could be accrued from this first, somewhat ambitious, attempt to effect a cascade tetracycle construction.
Having acquired an appreciation of the scope and some of the limitations of the approach to polycycle constructions based on the principles of radical mediated cascade macrocyclisationtransannulation reaction enunciated in this and the accompany-

Scheme 7 Reagents and conditions: $\mathrm{i}, \mathrm{CH}_{2}=\mathrm{CHOEt}, \mathrm{Hg}\left(\mathrm{OCOCF}_{3}\right)_{2}$; ii, heat; iii, $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCH}_{2} \mathrm{CH}\left(\mathrm{O}^{-}\right) \mathrm{CH}=\mathrm{CH}_{2}$; iv, TBAF; v, NBS, PPh_{3}; vi, Dess-Martin periodinane; vii, $\mathrm{NaI}, \mathrm{Me}_{2} \mathrm{CO}$

ing papers-together with an insight into the information that can be gleamed from molecular modelling-further detailed studies are now in progress building on these preliminary investigations, amongst a number of alternative carbo- and hetero-polycyclic constructions. The outcome of these studies will be published in due course.

Experimental

For general experimental details see preceding paper. ${ }^{1}$

Undeca-3,8-diyne-1,11-diol 10

Lithium ($475 \mathrm{mg}, 68 \mathrm{mmol}$) was added in small portions to stirred freshly distilled liquid ammonia ($150 \mathrm{~cm}^{3}$) in a flask fitted with a solid CO_{2} condenser to give a blue solution. Iron(III) nitrate ($200 \mathrm{mg}, 0.5 \mathrm{mmol}$) was added in one portion to this, and the brown solution which developed was stirred under reflux for 30 min . Hepta-1,6-diyne ($3 \mathrm{~g}, 33 \mathrm{mmol}$) was added dropwise over 5 min to the reaction mixture which was then stirred under reflux for 45 min . Ethylene oxide (approx. $6 \mathrm{~g}, 0.13 \mathrm{~mol}$) was bubbled through the mixture over 30 min , after which it was stirred under reflux for 4 h . Water ($50 \mathrm{~cm}^{3}$) was added to the mixture which was then stirred for 16 h , during which time the residual ammonia evaporated. The resulting aqueous solution was acidified with dilute hydrochloric acid ($100 \mathrm{~cm}^{3}$) and then extracted with ether $\left(4 \times 100 \mathrm{~cm}^{3}\right)$. The combined extracts were dried and evaporated under reduced pressure to leave a residue which was purified by column chromatography on silica using light petroleum-ether ($1: 1$) as eluent to give (i) nona-3,8-diyn-1ol ($1.78 \mathrm{~g}, 40 \%$) as a pale yellow oil (Found: C, 79.1; H, 9.2. $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}$ requires $\mathrm{C}, 79.4 ; \mathrm{H}, 8.9 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3928,2938$, $2844,1454,1433,1045,758$ and $638 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.71$ (2 H , quin., $J 7.0, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.91(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 1.97(1 \mathrm{H}$, $\mathrm{t}, J 2.6, \mathrm{CCH}), 2.31\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CCCH}_{2}\right), 2.43(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CCCH}_{2}\right)$ and $3.68\left(2 \mathrm{H}, \mathrm{t}, J 5.8, \mathrm{CH}_{2} \mathrm{OH}\right) ; \delta_{\mathrm{C}}(67.8 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 17.3(\mathrm{t}), 17.6(\mathrm{t}), 22.9(\mathrm{t}), 27.5(\mathrm{t}), 61.1(\mathrm{t}), 68.7(\mathrm{~s}), 77.2$ (s), 80.9 (s) and $83.5(\mathrm{~d}) ; m / z(\mathrm{EI}) 136.0842\left(M^{+} . \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}\right.$ requires 136.0888), $135(13 \%)$, $121(24 \%), 117(33 \%), 105(84 \%)$, $91(93 \%)$ and $79(100 \%)$; and (ii) the diynediol $10(2.2 \mathrm{~g}, 37 \%)$, as a white crystalline solid, $\mathrm{mp} 102^{\circ} \mathrm{C}$ (Found: C, $73.2 ; \mathrm{H}, 9.1$. $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}$ requires C, $73.3 ; \mathrm{H}, 9.0 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3576$,
$2943,2842,2360,1346,1002$ and $909 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.69$ (2 H , quin., J7.0, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.88(2 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 2.30(4 \mathrm{H}$, $\left.\mathrm{m}, 2 \times \mathrm{CCCH}_{2}\right), 2.44\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CCCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$ and 3.69 $\left(4 \mathrm{H}, \mathrm{t}, J 5.8,2 \times \mathrm{CH}_{2} \mathrm{OH}\right) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 17.6(2 \times \mathrm{t})$, $22.8(2 \times \mathrm{t}), 27.9(\mathrm{t}), 61.1(2 \times \mathrm{t}), 77.1(2 \times \mathrm{s})$ and $81.0(2 \times \mathrm{s})$; m / z (EI) $179.1053\left(M^{+}-\mathrm{H} . \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{2}\right.$ requires 179.1072), 161 $(7 \%), 149(53 \%), 135(28 \%), 117(31 \%), 105(36 \%)$ and 91 (100%).

($\boldsymbol{E}, \boldsymbol{E}$)-Undeca-3,8-diene-1,11-diol 11

A solution of undeca-3,8-diyne-1,11-diol ($2 \mathrm{~g}, 11 \mathrm{mmol}$) in tetrahydrofuran $\left(2 \mathrm{~cm}^{3}\right)$ was added cautiously dropwise over 5 min to a stirred solution of lithium aluminium hydride $(8.3 \mathrm{~g}$, 22 mmol) in tetrahydrofuran ($200 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$. The mixture was heated under reflux in an atmosphere of nitrogen for 20 h after which it was cooled and quenched by careful addition of saturated aqueous sodium sulfate. The mixture was acidified with dilute hydrochloric acid $\left(100 \mathrm{~cm}^{3}\right)$ and then extracted with ether ($4 \times 100 \mathrm{~cm}^{3}$). The combined extracts were dried and evaporated under reduced pressure to leave a yellow oil, which was purified by column chromatography on silica using ether as eluent to give the dienediol $11(2.0 \mathrm{~g}, 100 \%)$ as a colourless oil (Found: C, 71.5; H, 11.4. $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2}$ requires C, 71.7; H, 10.9%); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3342,2925,1777,1711,1438,1048,968$, 766 and $668 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.45(2 \mathrm{H}$, quin., J 7.4, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.65(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.03(4 \mathrm{H}, \mathrm{app} \mathrm{q}, J 7.0$, $\left.2 \times \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 2.27\left(4 \mathrm{H}\right.$, app q, $\left.J 7.0,2 \times \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right)$, $3.63\left(4 \mathrm{H}, \mathrm{t}, J 6.3,2 \times \mathrm{CH}_{2} \mathrm{OH}\right)$ and $5.34-5.61(4 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{CH}=\mathrm{CH}) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 29.3(\mathrm{t}), 32.3(2 \times \mathrm{t}), 36.2$ $(2 \times \mathrm{t})$, $62.3(2 \times \mathrm{t}), 126.6(2 \times \mathrm{d})$ and $133.4(2 \times \mathrm{d}) ; m / z(\mathrm{EI})$ $154.1334\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{O} . \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}\right.$ requires 154.1358), 135 $(7 \%), 125(7 \%), 107(24 \%), 98(38 \%)$ and $81(100 \%)$.

(E, E)-11-Bromoundeca-3,8-dien-1-ol 12a

Triphenylphosphine ($4.1 \mathrm{~g}, 16 \mathrm{mmol}$) and then N-bromosuccinimide ($2.79 \mathrm{~g}, 16 \mathrm{mmol}$) were added, each in one portion, to a stirred solution of undeca-3,8-diene-1,11-diol ($1.8 \mathrm{~g}, 9.78 \mathrm{mmol}$) in dichloromethane ($180 \mathrm{~cm}^{3}$) at $-30^{\circ} \mathrm{C}$. The solution was allowed to warm to room temperature and then stirred at this temperature for 36 h . Saturated aqueous sodium chloride (100 cm^{3}) was added to the reaction mixture after which the aqueous layer was separated and extracted with dichloromethane $\left(4 \times 100 \mathrm{~cm}^{3}\right)$. The combined extracts were dried and evaporated under reduced pressure to leave a yellow oil which was purified by column chromatography on silica using light petroleum-ether ($1: 1$) and then ether, to give (i) all- E-undeca-3,8-diene dibromide ($0.654 \mathrm{~g}, 22 \%$) as a colourless oil (Found: $\mathrm{C}, 42.9 ; \mathrm{H}, 6.0 ; \mathrm{Br}, 51.6 . \mathrm{C}_{11} \mathrm{H}_{18} \mathrm{Br}_{2}$ requires C, 42.6; $\mathrm{H}, 5.9 ; \mathrm{Br}$, 51.5%); $v_{\max }($ film $) / \mathrm{cm}^{-1} 2960,2926,2853,1435,1265,1207$, 968 and $641 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.44(2 \mathrm{H}$, quin., J 7.4 , $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.02\left(4 \mathrm{H}\right.$, app q, $\left.J 7.0,2 \times \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 2.55$ (4 H , app q, $J 6.9,2 \times \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}$), $3.38(4 \mathrm{H}, \mathrm{t}, J 7.1$, $\left.2 \times \mathrm{CH}_{2} \mathrm{Br}\right)$ and $5.34-5.59(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}) ; \delta_{\mathrm{C}}(67.8 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 28.7(\mathrm{t}), 31.8(2 \times \mathrm{t}), 32.9(2 \times \mathrm{t}), 36.0(2 \times \mathrm{t}), 126.8$ $(2 \times \mathrm{d})$ and $133.4(2 \times \mathrm{d}) ; m / z($ EI $) 307.9806\left(\mathrm{M}^{+} . \mathrm{C}_{11} \mathrm{H}_{18} \mathrm{Br}_{2}\right.$ requires 307.9775), $203(5 \%), 201(6 \%), 160(51 \%)$ and 81 (100%); (ii) the bromo alcohol $12 \mathrm{a}(1.08 \mathrm{~g}, 46 \%$) as a pale yellow oil (Found: C, 53.5; H, 8.1. $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{BrO}$ requires C, 53.5; H, 7.8%); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3346,2926,2854,1666,1438,1354$, 1048 and $968 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.45(2 \mathrm{H}$, quin., J 7.4, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.61(1 \mathrm{H}$, br s, OH$), 2.04(4 \mathrm{H}, \mathrm{m}$, $\left.2 \times \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 2.27\left(2 \mathrm{H}\right.$, app q, $\left.J 6.8, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 2.55$ (2 H , app q, $J 6.8, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}$), $3.38\left(2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{Br}\right.$), $3.64\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right)$ and $5.34-5.59(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH})$; $\delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 28.9$ (t), 31.8 (t$), 31.9$ (t$), 32.9$ (t), 35.9 ($2 \times \mathrm{t}$), 62.0 (t), 126.1 (d), 126.7 (d), 133.4 (d) and 133.6 (d); m / z (EI) $167.1388\left(\mathrm{M}^{+}-\mathrm{HBr} . \mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}\right.$ requires 167.1435), 121
$(16 \%), 98(30 \%)$ and $81(100 \%)$; and (iii) recovered diol $(0.45 \mathrm{~g}$, 25%).

($\boldsymbol{E}, \boldsymbol{E}$)-11-Bromoundeca-3,8-dienal 12b

Periodinane ($2.33 \mathrm{~g}, 6.19 \mathrm{mmol}$) was added in one portion to a stirred solution of 11-bromoundeca-3,8-dienol ($1.0 \mathrm{~g}, 4.13$ mmol) in dichloromethane ($100 \mathrm{~cm}^{3}$) at room temperature, and the solution was then stirred at room temperature under a nitrogen atmosphere for 4 h . The mixture was poured onto a stirred solution of sodium thiosulfate in saturated aqueous sodium hydrogencarbonate ($10 \% ; 50 \mathrm{~cm}^{3}$), and then stirred vigourously for 20 min . The aqueous layer was separated and extracted with dichloromethane $\left(4 \times 50 \mathrm{~cm}^{3}\right)$ and the combined extracts were then dried and evaporated under reduced pressure to leave the aldehyde $\mathbf{1 2 b}(0.95 \mathrm{~g}, 96 \%)$ as a pale yellow oil; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2924,2854,2721,1726,1690$, $1439,1266,1208,969,739$ and $641 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.46(2$ H, quin., $\left.J 7.4, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.04\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right)$, $2.55\left(2 \mathrm{H}\right.$, app q, $\left.J 6.9, \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 3.17(2 \mathrm{H}, \mathrm{dd}, J 6.4$ and $\left.1.5, \mathrm{CHOCH}_{2} \mathrm{CH}=\mathrm{CH}\right), 3.38\left(2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{Br}\right), 5.34$ $5.65(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH})$ and $9.67(1 \mathrm{H}, \mathrm{t}, J 1.5, \mathrm{CHO}) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $28.7(\mathrm{t}), 31.9(\mathrm{t}), 32.1(\mathrm{t}), 33.0(\mathrm{t}), 36.1(\mathrm{t}), 47.4(\mathrm{t})$, 119.6 (d), 127.1 (d), 133.4 (d), 136.5 (d) and 200.4 (d); m / z (EI) $159.9913\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CHO} . \mathrm{C}_{6} \mathrm{H}_{9} \mathrm{Br}\right.$ requires $159.9888), 162(18 \%), 121(12 \%), 97(15 \%), 79(31 \%)$ and 67 (100%); the product was used without further purification.

(E, E)-13-Bromotrideca-1,5,10-trien-3-ol 14

(a) Vinylmagnesium chloride ($1.7 \mathrm{~mol} \mathrm{dm}^{-3}$ solution; $2.92 \mathrm{~cm}^{3}$, 4.96 mmol) was added dropwise over 5 min to a stirred solution of the dienal $12 \mathrm{~b}(0.99 \mathrm{~g}, 4.1 \mathrm{mmol})$ in tetrahydrofuran $\left(100 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The solution was warmed to room temperature and stirred for 2 h , after which it was quenched by the addition of saturated aqueous ammonium chloride $\left(50 \mathrm{~cm}^{3}\right)$. The aqueous layer was separated and extracted with ether ($4 \times 50 \mathrm{~cm}^{3}$), and the combined extracts were then dried and evaporated under reduced pressure to leave a residue. This was purified by column chromatography on silica using light petroleum-ether (3:1) as eluent to give the alcohol $14(0.625 \mathrm{~g}, 56 \%$ from bromo alcohol) as a colourless oil; $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 3377,2926,2854,1643,1425$, 1266, 1207, 1120, 968 and $922 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.44(2 \mathrm{H}$, quin., $\left.J 7.4, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.72(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.03(4 \mathrm{H}, \mathrm{m}$, $\left.2 \times \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 2.18-2.3\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 2.55(2 \mathrm{H}$, app q, $\left.J 6.9, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 3.37\left(2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{Br}\right), 4.14(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CHOH}), 5.13\left(1 \mathrm{H}, \mathrm{dd}, J 10.4\right.$ and $\left.1.4, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.25(1 \mathrm{H}$, dd, $J 17.2$ and 1.4, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 5.35-5.59(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH})$ and $5.88\left(1 \mathrm{H}\right.$, ddd, $J 17.2,10.4$ and $\left.5.8, \mathrm{C} H=\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 28.9(\mathrm{t}), 31.9(\mathrm{t}), 32.0(\mathrm{t}), 32.9(\mathrm{t}), 36.0(\mathrm{t}), 40.5(\mathrm{t}), 72.1$ (d), 114.6 (t), 125.5 (d), 126.8 (d), 133.5 (d), 134.4 (d) and 140.5 (d); m / z (EI) $216.0453\left[\mathrm{M}^{+}-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}=\mathrm{CH}_{2} . \mathrm{C}_{10} \mathrm{H}_{17} \mathrm{Br}\right.$ requires 216.0514], $218(3 \%), 189(3 \%), 187(3 \%), 160(16 \%), 109$ (11%), $95(18 \%)$ and $57(100 \%)$.
(b) A solution of butyllithium in hexane $\left(1.6 \mathrm{~mol} \mathrm{dm}^{-3} ; 2.76\right.$ $\mathrm{cm}^{3}, 4.4 \mathrm{mmol}$) was added dropwise over 20 min to a stirred suspension of methyltriphenylphosphonium bromide $(1.59 \mathrm{~g}$, 4.4 mmol) in dry THF ($10 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$ under nitrogen. Butadiene monoepoxide ($393 \mathrm{~mm}^{3}, 4.88 \mathrm{mmol}$) \ddagger was added to the mixture which was then allowed to warm to room temperature, where it was stirred for a further 1 h . The mixture was cooled to $-20^{\circ} \mathrm{C}$ and after which butyllithium in hexane ($2.7 \mathrm{~cm}^{3}, 4.4 \mathrm{mmol}$) was added dropwise over 10 min . The resulting solution of 17 was stirred at room temperature for 20 min , and then treated dropwise over 3 min with a solution of 8 -bromooct-5-enal 16b ${ }^{1}(910 \mathrm{mg})$ in THF $\left(0.5 \mathrm{~cm}^{3}\right)$. The mixture was stirred at room temperature overnight, and then quenched
$\ddagger 1 \mathrm{~mm}^{3}=1 \mu \mathrm{l}$.
with water and poured onto ethyl acetate. The organic extracts were washed with saturated aqueous ammonium chloride, and then dried and evaporated under reduced pressure. The residue was purified by chromatography to give the bromo alcohol $(0.86 \mathrm{~g}, 71 \%)$ (largely $E, E-$) as a colourless oil which showed spectroscopic data identical with those reported under (a).

(E, E)-13-Bromotrideca-1,5,10-trien-3-one 13

Periodinane ($1.05 \mathrm{~g}, 2.78 \mathrm{mmol}$) was added in one portion to a stirred solution of the trienol $14(0.5 \mathrm{~g}, 1.85 \mathrm{mmol})$ in dichloromethane $\left(50 \mathrm{~cm}^{3}\right)$ at room temperature, after which the solution was stirred at room temperature under a nitrogen atmosphere for 6 h . The mixture was poured onto a stirred solution of sodium thiosulfate in saturated aqueous sodium hydrogen carbonate ($10 \% ; 25 \mathrm{~cm}^{3}$) and then stirred vigorously for 20 min . The aqueous layer was separated and extracted with dichloromethane $\left(4 \times 25 \mathrm{~cm}^{3}\right)$, and the combined organic extracts were then dried and evaporated under reduced pressure to leave a yellow oil. This was purified by column chromatography on silica using light petroleum-dichloromethane ($1: 1$) as eluent to give the enone $13(369 \mathrm{mg}, 75 \%)$ as a colourless oil; $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 2925,2853,1701,1686,1615$, $1438,1400,1255$ and $967 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.43(2 \mathrm{H}$, quin., $\left.J 7.4, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.01\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right)$, $2.53\left(2 \mathrm{H}\right.$, app q, $\left.J 6.8, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 3.28(2 \mathrm{H}, \mathrm{d}, J 4.0$, $\mathrm{COCH}_{2} \mathrm{CH}=\mathrm{CH}$), $3.35\left(2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{Br}\right), 5.34-5.55(4 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}=\mathrm{CH}), 5.82\left(1 \mathrm{H}, \mathrm{dd}, J 10.0\right.$ and $\left.1.6, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.23(1 \mathrm{H}$, dd, $J 17.6$ and $\left.1.6, \mathrm{CH}=\mathrm{CH}_{2}\right)$ and $6.37(1 \mathrm{H}$, dd, $J 17.6$ and 10.0, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 28.5(\mathrm{t}), 31.7(\mathrm{t}), 31.8(\mathrm{t}), 32.8$ (t), 35.8 (t$), 43.6$ (t$), 121.9$ (d), 126.7 (d), 128.4 (t), $133.2(\mathrm{~d})$, $134.6(\mathrm{~d}), 135.7$ (d) and 198.6 (s); m/z (EI) $270.0612\left(\mathrm{M}^{+}\right.$. $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{BrO}$ requires 270.0619), $191(2.5 \%), 122(2.8 \%), 109$ (3.8%) and $81(16.3 \%)$.

(E, E)-13-Iodotrideca-1,5,10-trien-3-one 6

Sodium iodide ($55.5 \mathrm{mg}, 0.37 \mathrm{mmol}$) was added in one portion to a stirred solution of the trienone $13(50 \mathrm{mg}, 0.185 \mathrm{mmol})$ in acetone ($30 \mathrm{~cm}^{3}$) and the solution was then heated under reflux for 2 h . The mixture was cooled and evaporated under reduced pressure and the residue was dissolved in ether ($30 \mathrm{~cm}^{3}$). The solution was washed with aqueous sodium thiosulfate (10%; $30 \mathrm{~cm}^{3}$) and then dried and evaporated under reduced pressure to leave the iodide $6(55.4 \mathrm{mg}, 94 \%)$; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3017$, 2927, 2854, 1681, 1618, 1216, 968 and $757 ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$; CDCl_{3}) $1.45\left(2 \mathrm{H}\right.$, quin., $\left.J 7.4, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.96-2.17(4 \mathrm{H}$, $\left.\mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 2.54\left(2 \mathrm{H}\right.$, app q$\left., J 6.8, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right)$, $3.14\left(2 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{I}\right), 3.30\left(2 \mathrm{H}, \mathrm{d}, J 4.0, \mathrm{COCH}_{2} \mathrm{CH}=\mathrm{CH}\right)$, $5.32-5.62(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 5.84(1 \mathrm{H}, \mathrm{dd}, J 10.0$ and 1.6 , $\left.\mathrm{CH}_{2}=\mathrm{CH}\right), 6.24\left(1 \mathrm{H}, \mathrm{dd}, J 17.6\right.$ and $\left.1.6, \mathrm{CH}_{2}=\mathrm{CH}\right)$ and $6.38(1$ $\mathrm{H}, \mathrm{dd}, J 17.6$ and $\left.10.0, \mathrm{CH}_{2} \mathrm{CH}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.2(\mathrm{t})$, $28.7(\mathrm{t}), 31.9(\mathrm{t}), 32.0(\mathrm{t}), 36.8(\mathrm{t}), 43.9(\mathrm{t}), 122.1(\mathrm{~d}), 128.6(\mathrm{t})$, $128.8(\mathrm{~d}), 133.1(\mathrm{~d}), 135.0(\mathrm{~d}), 136.0(\mathrm{~d})$ and $198.9(\mathrm{~s}) ; m / z(\mathrm{EI})$ $318.0466\left(\mathrm{M}^{+} . \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{IO}\right.$ requires 318.0481$)$, 121 (13.5%), 81 $(20.2 \%), 67(26.1 \%)$ and $55(100 \%)$. The product was used without further purification.

Dodecahydrodicyclopenta[a,c]cyclohepten-4-one 20

The trienone $6(54 \mathrm{mg}, 0.18 \mathrm{mmol})$ in benzene $\left(1 \mathrm{~cm}^{3}\right)$ was added dropwise over 5 min to a stirred and refluxing solution of AIBN (10 mg) in degassed benzene ($55 \mathrm{~cm}^{3}$) under a nitrogen atmosphere. Tributyltin hydride ($52.8 \mathrm{~mm}^{3}, 0.199 \mathrm{mmol}$) was added dropwise to the refluxing solution which was then heated under reflux for 2 h before being cooled to room temperature. Saturated aqueous potassium fluoride $\left(40 \mathrm{~cm}^{3}\right)$ was added to the mixture which was then stirred vigorously for 18 h . The resulting mixture was partitioned between ether ($50 \mathrm{~cm}^{3}$) and water ($50 \mathrm{~cm}^{3}$). The aqueous layer was then separated and
extracted with ether $\left(4 \times 20 \mathrm{~cm}^{3}\right)$. The combined extracts were dried and evaporated under reduced pressure to leave a residue which was purified by column chromatography on silica using pentane-dichloromethane $(2: 1)$ as eluent to give the cyclic ketone $\left(13 \mathrm{mg}, 42 \%\right.$) as a colourless oil; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2950$, $2859,1693,1453,1355,1322,1128,968$ and $907 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.18-1.35(4 \mathrm{H}, \mathrm{m}), 1.35-1.50(1 \mathrm{H}, \mathrm{m}), 1.50-1.74(7 \mathrm{H}$, $\mathrm{m}), 1.78-2.01(4 \mathrm{H}, \mathrm{m}), 2.18-2.40(2 \mathrm{H}, \mathrm{m}), 2.54-2.60(1 \mathrm{H}$, ddd, $J 14.6,7.0$ and 2.6$)$ and $2.68-2.74(1 \mathrm{H}, \mathrm{dt}, J 9.7$ and 6.7$) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 24.9 (t), 25.3 (t), 25.9 (t), 27.4 (t$), 33.0$ (t), 33.9 (t), $34.8(\mathrm{t}), 41.9(\mathrm{~d}), 44.0(\mathrm{t}), 45.9(\mathrm{~d}), 48.8(\mathrm{~d}), 56.5(\mathrm{~d})$ and 212.0 (s); $m / z(\mathrm{EI}) 192.1524\left(\mathrm{M}^{+} . \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}\right.$ requires 192.1514), 151 $(37 \%), 123(36 \%), 110(27 \%)$ and $95(100 \%)$. A small amount ($\sim 4 \%$) of trideca-1,5,10-trien-3-one was also obtained, as a colourless oil; $\nu_{\max }($ film $) / \mathrm{cm}^{-1} 3005,2924,2853,1718,1681$, $1617,1402,1383,1249,1182,1070,992$ and $964 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.96\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.43(2 \mathrm{H}$, app quin., $J 7.4$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.99\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 3.30(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CO}\right), 5.41(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 5.55(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{CH}), 5.84\left(1 \mathrm{H}\right.$, dd, $J 10.0$ and $\left.1.8, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.25(1 \mathrm{H}$, $\mathrm{dd}, J 17.6$ and $\left.1.8 \mathrm{CH}=\mathrm{CH}_{2}\right)$ and $6.39(1 \mathrm{H}, \mathrm{dd}, J 17.6$ and 10.0 , $\left.\mathrm{CH}=\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.1(\mathrm{q}), 25.7(\mathrm{t}), 29.2(\mathrm{t}), 32.0$ $(\mathrm{t}), 32.1(\mathrm{t}), 43.9(\mathrm{t}), 121.9(\mathrm{~d}), 128.6(\mathrm{t}), 128.9(\mathrm{~d}), 132.5(\mathrm{~d})$, 135.2 (d), $136.0(\mathrm{~d})$ and $199.0(\mathrm{~s})$.

X-Ray crystal structure determination of the 2,4-dinitrophenylhydrazone derivative of the tricyclic ketone 20 . The $2,4-\mathrm{DNP}$ derivative crystallised from ethanol and had mp $184-186^{\circ} \mathrm{C}$. Monoclinic, $a=9.622(3), b=14.658(2), c=13.494(2) \AA, \beta=$ $106.05(2)^{\circ}, U=1828.91 \AA^{3}, Z=4$, space group $P 2_{1} /$ a. $R=$ $0.0764, R_{w}=0.0524$ for 597 observed reflections measured with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation on an Enraf-Nonius CAD4 diffractometer. Atomic coordinates, bond lengths, bond angles, thermal parameters and observed and calculated structure factors have been deposited at the Cambridge Crystallographic Data Centre.

(E, E)-Ethyl 10-bromodeca-2,7-dienoate 26a

A solution of the enal $\mathbf{2 5 a}^{1}$ ($340 \mathrm{mg}, 1.66 \mathrm{mmol}$) and ethoxycarbonylmethylene(triphenyl)phosphorane (580 mg, 1.66 mmol) in dichloromethane ($5 \mathrm{~cm}^{3}$) was stirred at room temperature for 12 h , and then evaporated to dryness under reduced pressure. The residue was triturated with light petroleum (bp $60-80^{\circ} \mathrm{C}$), after which the light petroleum extracts were evaporated to leave a residue. Chromotography of this on silica, using dichloromethane-light petroleum ($1: 1$) as eluent, gave the dienoate $26 \mathrm{a}(0.43 \mathrm{~g}, 94 \%$) as a colourless oil; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2932,1719,1654,1267,1195$, 1044 and $972 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.20(3 \mathrm{H}, \mathrm{t}, J 6.9$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $1.46\left(2 \mathrm{H}\right.$, app quin., $J 7.6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.97 (2 H, m, allylic), $2.13(2 \mathrm{H}, \mathrm{m}$, allylic), 2.47 ($2 \mathrm{H}, \mathrm{m}$, allylic), 3.29 (2 $\left.\mathrm{H}, \mathrm{t}, J 6.9, \mathrm{CH}_{2} \mathrm{Br}\right), 4.10\left(2 \mathrm{H}, \mathrm{q}, J 6.9, \mathrm{CH}_{2} \mathrm{O}\right), 5.38(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}\right), 5.74\left(1 \mathrm{H}, \mathrm{d}, J 15.5, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right)$ and $6.87\left(1 \mathrm{H}\right.$, dt, $J 15.5$ and $\left.6.9, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right) ; \delta_{\mathrm{C}}(67.8 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 166.5$ (s), 148.8 (d), 132.7 (d), 127.2 (d), 121.3 (d), 60.0 $(\mathrm{t}), 35.7(\mathrm{t}), 32.7(\mathrm{t}), 31.6(\mathrm{t}), 31.3(\mathrm{t}), 27.3(\mathrm{t})$ and $14.1(\mathrm{q}) ; m / z$ (EI) $195.1370\left(\mathrm{M}^{+}-\mathrm{Br} . \mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{2}\right.$ requires 195.1385) 121 (100%), $114(26 \%), 81(73 \%), 67(49 \%)$ and $55(33 \%)$.

(E, E)-10-Bromodeca-2,7-dien-1-ol 27a

A solution of DIBAL in hexane $\left(1 \mathrm{~mol} \mathrm{dm}^{-3} ; 4.1 \mathrm{~cm}^{3}, 4.06\right.$ mmol) was added dropwise over 10 min to a stirred solution of the dienoate $26 \mathbf{a}(430 \mathrm{mg}, 1.56 \mathrm{mmol})$ in dry hexane $\left(5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ under nitrogen. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min , after which it was quenched with hydrochloric acid ($2 \mathrm{~mol} \mathrm{dm}^{-3}$; $1 \mathrm{~cm}^{3}$). The separated hexane extract was washed with brine, dried and evaporated under reduced pressure. The residue was purified by chromatography on silica using ethyl acetate-light petroleum (bp $60-80^{\circ} \mathrm{C}$) (1:9) as eluent to give the alcohol 27a
$(0.37 \mathrm{~g}, 98 \%)$ as a pale yellow oil; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3343 \mathrm{br}, 2926$, 2855, 1438 and 696; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.44(2 \mathrm{H}$, app quin., J7.2, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.02(4 \mathrm{H}, \mathrm{m}$, allylic), $2.19(1 \mathrm{H}$, br s, OH$)$, $2.52\left(2 \mathrm{H}, \mathrm{m}\right.$, allylic), $3.35\left(2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{Br}\right), 4.05(2 \mathrm{H}$, d, $\left.J 4.4, \mathrm{CH}_{2} \mathrm{OH}\right)$, $5.44(2 \mathrm{H}, \mathrm{m}$, vinylic) and $5.63(2 \mathrm{H}, \mathrm{m}$, vinylic); m / z (EI) $135.1188\left[\mathrm{M}^{+}-\left(\mathrm{Br}+\mathrm{H}_{2} \mathrm{O}\right) . \mathrm{C}_{10} \mathrm{H}_{15}\right.$ requires 135.1174$] 162(20 \%), 160(17 \%)$, $95(27 \%)$, 81 (100%), $79(23 \%), 67(73 \%), 55(62 \%)$ and $41(91 \%)$.

($\boldsymbol{E}, \boldsymbol{E}$)-12-Bromododeca-1,4,9-trien-3-ol 29a

The alcohol was prepared from 10-bromodeca-2,7-dienal 28a (produced from the corresponding carbinol 27a by oxidation with PCC) and vinylmagnesium chloride, using the general procedure used in the synthesis of the trienol 14. Chromatography gave the alcohol (50%) as a clear oil; $v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1}$ $3360 \mathrm{br}, 2926,2855,1668 \mathrm{w}$ and $968 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.46$ (2 H , app quin., $J 7.3, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.04(4 \mathrm{H}, \mathrm{m}$, allylic), 2.54 ($2 \mathrm{H}, \mathrm{m}$, allylic), $3.36\left(2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{Br}\right), 4.58(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHOH}), 5.09-5.58(5 \mathrm{H}, \mathrm{m}$, vinylic), $5.68(1 \mathrm{H}, \mathrm{dt}, J 15.5$ and 6.5 , vinylic) and $5.89\left(1 \mathrm{H}\right.$, ddd, $J 17.2,10.4$ and $\left.5.8, \mathrm{CH}_{2}=\mathrm{CH}\right)$; $\delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 139.8$ (d), 133.3 (d), 132.3 (d), 131.3 (d), 126.9 (d), 114.6 (t), 73.7 (d), $35.9(\mathrm{t}), 32.8(\mathrm{t}), 31.5(\mathrm{t}), 29.6$ (t) and 28.5 (t); m / z (EI) $179.1807\left(\mathrm{M}^{+}-\mathrm{Br} . \mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}\right.$ requires 179.1436) $123(11 \%), 119(11 \%), 111(20 \%), 105(13 \%), 97$ $(31 \%), 93(100 \%), 77(68 \%), 67(57 \%), 57(50 \%)$ and $41(78 \%)$.

($\boldsymbol{E}, \boldsymbol{E}$)-12-Bromododeca-1,4,9-trien-3-one 30a

The enone was prepared from the trienol 29a, following oxidation with periodinane according to the procedure used in the synthesis of the trienone 13. Chromatography on silica, using 5% ethyl acetate in light petroleum (bp $60-80^{\circ} \mathrm{C}$) as eluent gave the enone 30a (84%) as a colourless oil; $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 2931,1666,1632,1611,1403,1217$ and 969 ; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.56\left(2 \mathrm{H}\right.$, app quin., $J 7.3, \mathrm{CH}_{2^{-}}$ $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.05(2 \mathrm{H}, \mathrm{m}$, allylic), $2.26(2 \mathrm{H}, \mathrm{m}$, allylic), 2.54 ($2 \mathrm{H}, \mathrm{m}$, allylic), $3.37\left(2 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{2} \mathrm{Br}\right), 5.45(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}\right), 5.81(1 \mathrm{H}, \mathrm{dd}, J 10.6$ and $1.4, \mathrm{COCH}=\mathrm{C} H \mathrm{H})$, 6.23-6.39 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCOCH}=\mathrm{CH} H), 6.60(1 \mathrm{H}, \mathrm{dd}, J 17.4$ and $\left.10.5, \mathrm{COCH}=\mathrm{CH}_{2}\right)$ and $6.92(1 \mathrm{H}, \mathrm{dt}, J 15.7$ and 7.0 , $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCO}$); $\delta_{\text {c }}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 190.0$ (s), 148.9 (d), 135.2 (d), 133.1 (d), 128.6 (t), 128.6 (d), 127.8 (d), 36.2 (t), 33.2 (t), $32.3(\mathrm{t}), 32.1(\mathrm{t})$ and $27.9(\mathrm{t}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 177.1320\left(\mathrm{M}^{+}-\mathrm{Br}\right.$. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}$ requires 177.1279) $177(7 \%), 159(10 \%), 149(9 \%), 131$ $(10 \%), 119(10 \%), 107(26 \%), 95(21 \%), 81(55 \%), 67(42 \%)$ and 55 (100%).

($\boldsymbol{E}, \boldsymbol{E}$)-12-Iodododeca-1,4,9-trien-3-one 21

The iodide was prepared from the corresponding bromide, in 75% yield, using the general procedure described for the synthesis of the trienone 6. It showed $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2929$, 1666, 1632, 1611, 1403, 1217 and $968 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.57 (2 H , app quin., $J 7.3, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.05(2 \mathrm{H}, \mathrm{m}$, allylic), $2.28(2 \mathrm{H}, \mathrm{m}$, allylic), $2.55(2 \mathrm{H}, \mathrm{m}$, allylic), $3.15(2 \mathrm{H}, \mathrm{t}, J 7.1$, $\mathrm{CH}_{2} \mathrm{I}$), $5.43\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}\right), 5.82(1 \mathrm{H}, \mathrm{dd}, J 10.5$ and $1.2, \mathrm{COCH}=\mathrm{CHH}), 6.33(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCOCH}=\mathrm{CH} H)$, $6.61\left(1 \mathrm{H}, \mathrm{dd}, J 17.4\right.$ and $\left.10.6, \mathrm{COCH}=\mathrm{CH}_{2}\right)$ and $6.94(1 \mathrm{H}, \mathrm{dt}$, $J 15.7$ and $\left.7.0, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCO}\right) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 189.7$ (s), 148.6 (d), 134.9 (d), 132.4 (d), 129.3 (d), 128.3 (t), 128.3 (d), 36.5 (t), 32.0 (t), 31.8 (t), 27.5 (t$)$ and 6.1 (t ; m / z (EI) 177.1300 $\left(\mathrm{M}^{+}-\mathrm{I} . \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}\right.$ requires 177.1279$) 177(5 \%)$, 149 (6%), $133(5 \%), 121(10 \%), 107(18 \%), 95(14 \%), 81(39 \%), 67(31 \%)$ and $55(100 \%)$.

1-(2-Cyclopropylcyclopentyl)but-3-en-2-one 33

Treatment of a solution of the trienone $21(37 \mathrm{mg})$ in benzene ($41 \mathrm{~cm}^{3}$) with $\mathrm{Bu}_{3} \mathrm{SnH}\left(35 \mathrm{~mm}^{3}, 0.13 \mathrm{mmol}\right)$-AIBN (2 mg),
according to the procedure described for the synthesis of the dicyclopentacycloheptenone 20 gave the bicycle (51%), as a mixture of diastereoisomers showing $v_{\max }($ film $) / \mathrm{cm}^{-1} 2952$, 1683, 1615, 1401, 1261, 1071 and $985 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $0.30-0.60\left(4 \mathrm{H}, \mathrm{m}\right.$, cyclopropyl $\left.\mathrm{CH}_{2}\right), 0.80-2.20(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}$, $\left.\mathrm{CH}_{2}\right), 2.37-2.62(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} H \mathrm{CO}), 2.83-3.01(1 \mathrm{H}, \mathrm{m}$, CHHCO), 5.82 ($1 \mathrm{H}, \mathrm{d}, J 10.6$, vinylic) and 6.19-6.45 ($2 \mathrm{H}, \mathrm{m}$, vinylic); $\delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$, major diastereoisomer) 211.0 (s), 136.9 (d), 127.5 (t), 47.5 (d), 41.4 (t), 38.6 (d), 31.3 (t$), 30.7$ (t), $22.8(\mathrm{t}), 12.0(\mathrm{~d}), 5.0(\mathrm{t})$ and $3.0(\mathrm{t}) ; m / z(\mathrm{EI}) 135.08\left[\mathrm{M}^{+}{ }_{-}\right.$ $\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) . \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}$ requires 135.0810] $108(66 \%)$, $95(26 \%), 81$ $(36 \%), 73(27 \%), 67(47 \%)$ and $55(100 \%)$.

(E, E)-Ethyl 9-bromonona-2,6-dienoate 26b

The unsaturated ester was prepared from 7-bromohept-4-enal (400 mg$)^{1}$ and ethoxycarbonylmethylene(triphenyl)phosphorane (730 mg), according to the procedure described for the synthesis of the analogue 26a. Chromatography gave the dienoate (90%) as a colourless oil; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2981,1720$, 1655 and $972 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.25(3 \mathrm{H}, \mathrm{t}, J$ 7.1, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $2.17(2 \mathrm{H}, \mathrm{m}$, allylic), $2.24(2 \mathrm{H}, \mathrm{m}$, allylic), $2.51\left(2 \mathrm{H}, \mathrm{m}\right.$, allylic), $3.33\left(2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{Br}\right), 4.15(2 \mathrm{H}, \mathrm{q}, J$ $\left.7.2, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.47\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}\right), 5.79(1 \mathrm{H}, \mathrm{dt}$, $J 15.6$ and $\left.1.3, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right)$ and $6.91(1 \mathrm{H}, \mathrm{dt}, J 15.6$ and 6.7 , $\left.\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 166.4$ (s), 148.1 (d), 131.8 (d), 127.7 (d), 121.6 (d), 60.0 (t), 35.7 (t), 32.5 (t), 31.7 (t), 30.7 (t) and 14.1 (q); m / z (EI) $260.0390\left(\mathrm{M}^{+} . \mathrm{C}_{11} \mathrm{H}_{17} \mathrm{BrO}_{2}\right.$ requires 260.0412), $215(17 \%), 181(14 \%), 149(14 \%), 135(13 \%)$, $114(83 \%), 107(68 \%), 86(87 \%), 81(11 \%), 67(100 \%), 55(13 \%)$ and 41 (91%).

(E,E)-9-Bromonona-2,6-dien-1-ol 27b

The alcohol was prepared from the corresponding ester by reduction with DIBAL, according to the procedure described for the synthesis of the dienol 27a. Chromatography, using dichloromethane as eluent gave the alcohol (68%) as a clear oil; $v_{\max }$ (film)/ $\mathrm{cm}^{-1} 3334 \mathrm{br}, 2922,1436,1265,1208,1089$ and 969 ; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.07(4 \mathrm{H}, \mathrm{m}$, allylic), $2.49(2 \mathrm{H}, \mathrm{m}$, allylic), $3.32\left(2 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{2} \mathrm{Br}\right), 4.00\left(2 \mathrm{H}, \mathrm{d}, J 4.2, \mathrm{CH}_{2} \mathrm{OH}\right)$ and $5.30-5.63\left(4 \mathrm{H}, \mathrm{m}\right.$, vinylic); $\delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 132.6$ (d), 131.8 (d), 129.3 (d), 126.9 (d), 63.1 (t), 35.7 (t), 32.7 (t), 31.8 (t) and 31.7 (t); m / z (EI) 121.1027 [M ${ }^{+}-\left(\mathrm{Br}+\mathrm{H}_{2} \mathrm{O}\right) . \mathrm{C}_{9} \mathrm{H}_{13}$ requires $121.1017 \mathrm{~J} 187(12 \%), 121(15 \%), 93(34 \%), 79(50 \%)$ and 67 (100%).

(E, E)-11-Bromoundeca-1,4,8-trien-3-ol 29b

The title trienol was prepared from the dienol $\mathbf{2 7 b}$, according to the procedures described for the synthesis of the trienol 29a. Chromatography, using ethyl acetate-light petroleum (bp 60 $\left.80^{\circ} \mathrm{C}\right)(1: 4)$ as eluent gave the bromo alcohol (85% overall) as a colourless oil; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3361 \mathrm{br}, 2924,2848,1435,1265$ and $969 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.08(4 \mathrm{H}$, m, allylic), $2.50(2 \mathrm{H}$, m , allylic), $2.58(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.32\left(2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{Br}\right), 4.53$ (1 H , app t, $J 5.7, \mathrm{CHOH}$), $5.07(1 \mathrm{H}, \mathrm{dt}, J 10.4$ and 1.4 , $\mathrm{CH}=\mathrm{C} H \mathrm{H}), 5.19(1 \mathrm{H}, \mathrm{dt}, J 17.2$ and $1.5, \mathrm{CH}=\mathrm{CH} H), 5.31-5.55$ ($3 \mathrm{H}, \mathrm{m}$, vinylic), $5.64(1 \mathrm{H}, \mathrm{m}$, vinylic) and $5.84(1 \mathrm{H}$, ddd, J $17.2,10.3$ and $5.7, \mathrm{CH}=\mathrm{CHH}) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 139.7$ (d), 132.6 (d), $131.4(2 \times \mathrm{d}), 127.0$ (d), 114.4 (t), 73.4 (d), 35.7 (t), $32.7(\mathrm{t}), 31.8(\mathrm{t})$ and $31.7(\mathrm{t}) ; m / z(\mathrm{EI}) 226.0376\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right.$. $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{Br}$ requires 226.0357) $226(6 \%)$, 174 (10%), $119(20 \%)$, $105(30 \%), 83(73 \%), 67(81 \%)$ and $55(100 \%)$.

($\boldsymbol{E}, \boldsymbol{E}$)-11-Iodoundeca-1,4,8-trien-3-one 23

Oxidation of the trienol 29b, using periodinane, according to the procedure described for the preparation of the trienone 13 first gave the trienone $30 \mathrm{a}(92 \%)$ as a colourless oil;
$v_{\max }($ film $) / \mathrm{cm}^{-1} 2928,1666,1632,1611,1403,1216$ and $970 ; \delta_{\mathrm{H}}(250$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 2.10-2.25 ($2 \mathrm{H}, \mathrm{m}$, allylic), 2.25-2.40 $(2 \mathrm{H}, \mathrm{m}$, allylic), $2.52\left(2 \mathrm{H}\right.$, app q, $\left.J 7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right), 3.33(2 \mathrm{H}, \mathrm{t}, J 7.0$, $\left.\mathrm{CH}_{2} \mathrm{Br}\right), 5.46\left(2 \mathrm{H}, \mathrm{m}, \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 5.78(1 \mathrm{H}, \mathrm{dd} J$ 10.6 and 1.4, $\mathrm{COCH}=\mathrm{CH} H), 6.24(1 \mathrm{H}, \mathrm{dd}, J 17.4$ and 1.4, $\mathrm{COCH}=\mathrm{C} H \mathrm{H}), 6.34\left(1 \mathrm{H}, \mathrm{d}, J 15.8, \mathrm{COC} H=\mathrm{CHCH}_{2}\right), 6.58(1$ H , dd, $J 14.4$ and $\left.10.5, \mathrm{COCH}=\mathrm{CH}_{2}\right)$ and $6.89(1 \mathrm{H}, \mathrm{dt}, J 15.7$ and $\left.6.6, \mathrm{COCH}=\mathrm{CHCH}_{2}\right) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 189.9$ (s), 148.1 (d), 135.1 (d), 132.1 (d), 128.8 (d), 128.7 (t), 128.2 (d), 36.1 (t), 33.0 (t), 32.6 (t) and 31.2 (t); m/z (EI) $163.1078\left(\mathrm{M}^{+}-\mathrm{Br}\right.$. $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}$ requires 163.1123) $163(17 \%)$, $96(55 \%)$, $67(100 \%)$ and $55(46 \%)$. Treatment of the bromide with sodium iodide in acetone, according to the procedure described for the preparation of the trienone 6, then gave the corresponding iodide $23(83 \%)$; $v_{\max }($ film $) / \mathrm{cm}^{-1} 1665,1632,1614,1403$ and 969 ; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.10-2.25(2 \mathrm{H}, \mathrm{m}$, allylic), 2.25-2.40(2 H, m , allylic), $2.52\left(2 \mathrm{H}\right.$, app q, $\left.J 7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{I}\right), 3.11(2 \mathrm{H}, \mathrm{t}, J 7.1$, $\left.\mathrm{CH}_{2} \mathrm{I}\right), 5.43\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ICH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 5.79(1 \mathrm{H}, \mathrm{dd}, J 10.6$ and $1.2, \mathrm{COCH}=\mathrm{CH} H), 6.25(1 \mathrm{H}$, dd, $J 17.4$ and 1.3, $\mathrm{COCH}=\mathrm{CHH}), 6.35\left(1 \mathrm{H}, \mathrm{d}, J 15.8, \mathrm{COCH}=\mathrm{CHCH}_{2}\right), 6.58(1$ $\mathrm{H}, \mathrm{dd}, J 17.4$ and $\left.10.6, \mathrm{COC} H=\mathrm{CH}_{2}\right)$ and $6.90(1 \mathrm{H}, \mathrm{dt}, J 15.7$ and $\left.6.6, \mathrm{COCH}=\mathrm{CHCH}_{2}\right) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 189.5$ (s), 147.7 (d), 134.7 (d), 131.4 (d), 129.6 (d), 128.4 (d), 128.3 (d), $36.3(\mathrm{t}), 32.3(\mathrm{t}), 32.2(\mathrm{t}), 30.8(\mathrm{t})$ and $5.8(\mathrm{t}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 163.0865$ $\left(\mathrm{M}^{+}-\mathrm{I} . \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}\right.$ requires 163.1123) 163 (15%), 107 (14%), $96(20 \%), 79(15 \%), 67(87 \%)$ and $55(100 \%)$.

($\boldsymbol{E}, \boldsymbol{E}$)-Cycloundeca-2,6-dienone 38

Treatment of a solution of the trienone $23(67 \mathrm{mg})$ in benzene ($77 \mathrm{~cm}^{3}$) with $\mathrm{Bu}_{3} \mathrm{SnH}\left(67 \mathrm{~mm}^{3}, 0.25 \mathrm{mmol}\right)$-AIBN (4 mg), according to the procedure described for the synthesis of dicyclopentacycloheptene 20, gave the dienone $38(6 \mathrm{mg}, 16 \%)$ as a colourless oil; $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 2927,2854,1692,1630,1260$, 1023 and 798; $\delta_{\mathrm{c}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 202.8$ (s), 144.5 (d), 136.7 (d), 134.0 (d), 128.4 (d), 45.1 (t), 32.9 (t$), 32.4$ (t), 32.1 (t$), 26.6$ (t) and 23.7 (t); m / z (EI) $164.1195\left(\mathrm{M}^{+} . \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}\right.$ requires 164.1201) $164(10 \%), 120(15 \%), 107(15 \%), 98(25 \%)$, $79(39 \%)$ and $68(100 \%)$. A considerable amount of unchanged starting material ($\sim 80 \%$) was recovered.

($\boldsymbol{E}, \boldsymbol{E}$)-12-tert-Butyldimethylsiloxydodeca-4,8-dienal 40

Mercuric trifluoroacetate ($273.5 \mathrm{mg}, 0.64 \mathrm{mmol}$) was added in one portion to a stirred solution of 10-tert-butyldimethylsiloxydeca-1,6-dien-3-ol ($3.65 \mathrm{~g}, 13 \mathrm{mmol})^{1}$ in ethyl vinyl ether $\left(100 \mathrm{~cm}^{3}\right)$, after which the solution was heated under reflux for 24 h . The solution was allowed to cool to room temperature and the solvent was then removed under reduced pressure to leave a brown oil. This was purified by column chromatography on silica using light petroleum-dichloromethane ($10: 1$) as eluent to give (E)-10-tert-butyldimethylsiloxy-3-vinyloxydeca-1,6-diene ($12.18 \mathrm{~g}, 36 \%$) as a pale yellow oil; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2930,2857,1634,1614,1256,1194,1102,837$ and $759 ; \delta_{\mathbf{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.05\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 0.90[9$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.52-1.81\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.0-2.08(4 \mathrm{H}, \mathrm{m}$, $\left.2 \times \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 3.60\left(2 \mathrm{H}, \mathrm{t}, J 6.5, \mathrm{CH}_{2} \mathrm{O}\right), 4.0(1 \mathrm{H}, \mathrm{dd}, J 6.6$ and $\left.1.5, \mathrm{OCH}=\mathrm{CH}_{2}\right), 4.15(1 \mathrm{H}$, app q, $J 6.6, \mathrm{CHO}), 4.30(1$ $\mathrm{H}, \mathrm{dd}, J 14.1$ and $\left.1.5, \mathrm{OCH}=\mathrm{CH}_{2}\right), 5.20(1 \mathrm{H}, \mathrm{dt}, J 10.7$ and 1.2 , CHCH=CH2), $5.21\left(1 \mathrm{H}, \mathrm{dt}, J 17.2\right.$ and 1.2, $\mathrm{CHCH}=\mathrm{CH}_{2}$), 5.42 $(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C} H), 5.74(1 \mathrm{H}, \mathrm{dt}, J 17.2,10.7$ and 6.7 , $\left.\mathrm{CHCH}=\mathrm{CH}_{2}\right)$ and $6.32\left(1 \mathrm{H}, \mathrm{dd}, J 14.1\right.$ and $\left.6.6, \mathrm{OCH}=\mathrm{CH}_{2}\right)$; $\delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-4.8(2 \times \mathrm{q}), 18.8(\mathrm{~s}), 26.4(3 \times \mathrm{q}), 28.5$ (t), 29.3 (t), 32.1 (t), 35.2 (t$), 63.0(\mathrm{t}), 80.5$ (d), 89.1 (t$), 117.1$ (t$)$, 129.8 (d), 131.2 (d), 138.3 (d) and 151.2 (d); m / z (EI) 253.1669 $\left[\mathrm{M}^{+}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \cdot \mathrm{C}_{14} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{Si}\right.$ requires 253.1624], 209 (9%), $171(3 \%), 155(3 \%), 135(14 \%)$ and $81(100 \%)$.

A solution of the above diene ($2.87 \mathrm{~g}, 9.2 \mathrm{mmol}$) in benzene (2 cm^{3}) was heated in a sealed tube at $120^{\circ} \mathrm{C}$ for 13 h . The solution was allowed to cool to room temperature, after which it was
evaporated under reduced pressure to leave a yellow oil. This was purified by column chromatography on silica using light petroleum-dichloromethane (7:1) as eluent to give the aldehyde $40(2.5 \mathrm{~g}, 87 \%)$ as a colourless oil (Found: C, 69.5; H, 11.6. $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{2}$ Si requires C, $69.6 ; \mathrm{H}, 11.0 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2856$, 2717, 1728, 1472, 1256, 1103, 968, 836 and $758 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.03\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 0.88\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.55(2$ H , quin., $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.02\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 2.32(2 \mathrm{H}$, app q, $\left.J 6.7, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 2.48\left(2 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{2} \mathrm{CHO}\right), 3.59$ ($2 \mathrm{H}, \mathrm{t}, J 6.5, \mathrm{CH}_{2} \mathrm{O}$), 5.38-5.44 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}$) and 9.74 (1 $\mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-5.4(2 \times \mathrm{q}), 18.3(\mathrm{~s}), 25.1$ (t), $25.9(3 \times \mathrm{q}), 28.7(\mathrm{t}), 32.5(\mathrm{t}), 32.6(\mathrm{t}), 32.8(\mathrm{t}), 43.4(\mathrm{t}), 62.5$ (t), 127.9 (d), 129.7 (d), 130.2 (d), 131.3 (d) and 202.1 (d); m / z (EI) $253.1669\left[\mathrm{M}^{+}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} . \mathrm{C}_{14} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{Si}\right.$ requires $253.1624], 209(9 \%), 171(3 \%), 155(3 \%), 135(14 \%), 81(100 \%)$.

(all-E)-17-tert-Butyldimethylsiloxyheptadeca-1,5,9,13-tetraen-3-ol 41a

Butyllithium ($1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ solution; $1.94 \mathrm{~cm}^{3}, 3.09 \mathrm{mmol}$) was added dropwise over 5 min to a stirred suspension of methyl(triphenyl)phosphonium bromide ($1.109 \mathrm{~g}, 3.09 \mathrm{mmol}$) in tetrahydrofuran ($8 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere, and the resulting solution was then stirred at $0^{\circ} \mathrm{C}$ for 20 min . Butadiene monoepoxide ($275 \mathrm{~mm}^{3}, 3.40 \mathrm{mmol}$) was added dropwise over 5 min to the solution which was then stirred at room temperature for 1 h . After this, the solution was cooled to $-20^{\circ} \mathrm{C}$, and then treated dropwise with butyllithium ($1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ solution; $1.94 \mathrm{~cm}^{3}, 3.09 \mathrm{mmol}$) over 5 min ; it was then stirred at $-20^{\circ} \mathrm{C}$ for 20 min . A solution of the dienal 40 ($960 \mathrm{mg}, 3.09 \mathrm{mmol}$) in tetrahydrofuran ($2 \mathrm{~cm}^{3}$) was added over 10 min to the red solution which was then stirred at room temperature for 18 h under a nitrogen atmosphere. After this the solution was quenched by the addition of ether $\left(10 \mathrm{~cm}^{3}\right)$ and water $\left(5 \mathrm{~cm}^{3}\right)$, and the aqueous layer was then separated and extracted with ether ($4 \times 10 \mathrm{~cm}^{3}$). The combined extracts were dried and evaporated under reduced pressure and the residue was purified by column chromatography on silica using light petroleum-dichloromethane ($1: 2$) as eluent to give the allylic alcohol 41a ($650 \mathrm{mg}, 56 \%$) as a colourless oil; $v_{\max }($ film $) / \mathrm{cm}^{-1}$ 3405, 2929, 2856, 1644, 1472, 1438, 1256, 1102, 967, 836 and $776 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.05\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 0.89[9 \mathrm{H}, \mathrm{s}$, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$], $1.56\left(2 \mathrm{H}\right.$, app quin., $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.88(1 \mathrm{H}$, br s, $\mathrm{OH}), 2.0-2.13\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}=\mathrm{CHCH}_{2}\right), 2.13-2.33(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CHOH}\right), 3.60\left(2 \mathrm{H}, \mathrm{t}, J 6.5, \mathrm{CH}_{2} \mathrm{O}\right), 4.12(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHOH}), 5.11\left(1 \mathrm{H}, \mathrm{dt}, J 10.5\right.$ and $\left.1.5, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.24(1 \mathrm{H}$, $\mathrm{dt}, J 17.2$ and $\left.1.5, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.30-5.60(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH})$ and $5.88\left(1 \mathrm{H}\right.$, ddd, $J 17.2,10.5$ and $5.7, \mathrm{CH}=\mathrm{CH}_{2}$). Signals observed for the major E isomer: $\delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-5.3(2 \times \mathrm{q})$, $18.3(\mathrm{~s}), 25.9(3 \times \mathrm{q}), 28.7(\mathrm{t}), 32.4(\mathrm{t}), 32.6(4 \times \mathrm{t}), 40.5(\mathrm{t})$, 62.5 (t), 71.8 (d), 114.5 (t), 125.3 (d), 129.7 (d), $130.0(2 \times \mathrm{d})$, 130.3 (d), 134.3 (d) and 140.3 (d); m / z (CI) $379.3032\left(\mathrm{MH}^{+}\right.$. $\mathrm{C}_{23} \mathrm{H}_{43} \mathrm{O}_{2} \mathrm{Si}$ requires 379.3032), 361, 247 and $229(100 \%)$.

(all-E)-Heptadeca-4,8,12,16-tetraen-1,15-diol 41b

Tetrabutylammonium fluoride ($1.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution; 1.72 $\mathrm{cm}^{3}, 1.89 \mathrm{mmol}$) was added dropwise over 10 min to a stirred solution of the tetraenol 41 a ($650 \mathrm{mg}, 1.73 \mathrm{mmol}$) in tetrahydrofuran $\left(50 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, after which the solution was allowed to warm to room temperature. After the solution had been stirred at room temperature for 6 h , it was diluted with water $\left(50 \mathrm{~cm}^{3}\right)$ and ether $\left(50 \mathrm{~cm}^{3}\right)$. The separated aqueous layer was extracted with ether ($4 \times 50 \mathrm{~cm}^{3}$), and the combined organic layers were dried and evaporated under reduced pressure to leave a yellow oil. This was purified by column chromatography on silica using light petroleum-ether (1:1) as eluent to give the $\operatorname{diol}(366 \mathrm{mg}, 81 \%)$ as a colourless oil; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3382,2921,1644,1434,1052,968$ and 758 ; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.62\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 2.04$ (10
$\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}$), $2.26\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CHOH}\right), 3.63$ ($2 \mathrm{H}, \mathrm{t}, J 6.5, \mathrm{CH}_{2} \mathrm{OH}$), $4.10(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 5.11(1 \mathrm{H}, \mathrm{dt}, J$ 10.4 and $\left.1.3, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.23(1 \mathrm{H}, \mathrm{dt}, J 17.2$ and 1.3 , $\left.\mathrm{CH}=\mathrm{C} H_{2}\right), 5.41(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 5.86(1 \mathrm{H}$, ddd, $J 17.2,10.4$ and 5.7, $\mathrm{CH}=\mathrm{CH}_{2}$). Signals observed for the major (E) isomer: $\delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $28.8(\mathrm{t}), 32.3(\mathrm{t}), 32.3(\mathrm{~d}), 32.4(\mathrm{t}), 32.5(\mathrm{~d})$, 32.5 (t), 40.4 (t), 62.2 (t), 71.8 (d), 114.4 (t), 125.3 (d), 129.7 (d), 129.8 (d), 130.2 (d), 130.3 (d), 134.1 (d) and 140.3 (d).

(all- \boldsymbol{E})-17-Bromoheptadeca-1,5,9,13-tetraen-3-ol 41c

N-Bromosuccinimide ($273 \mathrm{mg}, 1.5 \mathrm{mmol}$) and triphenylphosphine ($436 \mathrm{mg}, 1.7 \mathrm{mmol}$) were added each in one portion to a stirred solution of the diol 41 b ($366 \mathrm{mg}, 1.4 \mathrm{mmol}$) in dichloromethane ($30 \mathrm{~cm}^{3}$) at $-30^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The solution was allowed to warm to room temperature after which it was stirred at room temperature for 6 h . It was then evaporated under reduced pressure to leave a semi-solid residue which was purified by column chromatography on silica using dichloromethane as eluent to give the bromo alcohol ($312 \mathrm{mg}, 69 \%$) as a colourless oil; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3385$, 2927, 1726, 1644, 1435, 1248, 1102,1045 and $968 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.92(2 \mathrm{H}$, app quin., $J 6.8$, $\mathrm{BrCH}_{2} \mathrm{CH}_{2}$), 1.96-2.20 ($10 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCH}_{2}$), 2.23-2.35 (2 $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCH} \mathrm{H}_{2} \mathrm{CHOH}\right), 3.41\left(2 \mathrm{H}, \mathrm{t}, J 6.8, \mathrm{CH}_{2} \mathrm{Br}\right), 4.13$ (1 $\left.\mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 5.13(1 \mathrm{H}, \mathrm{dd}, J 10.4 \text { and } 1.4, \mathrm{CH}=\mathrm{CH})_{2}\right), 5.26$ $\left(1 \mathrm{H}, \mathrm{dd}, J 17.1\right.$ and $\left.1.4, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.32-5.60(6 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{CH})$ and $5.88\left(1 \mathrm{H}\right.$, ddd, $J 17.1,10.4$ and $\left.5.3, \mathrm{C} H=\mathrm{CH}_{2}\right)$. Signals observed for the major E isomer: $\delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $30.8(\mathrm{t}), 32.3(\mathrm{t}), 32.4(\mathrm{t}), 32.5(\mathrm{t}), 32.5(\mathrm{t}), 32.6(\mathrm{t}), 33.3(\mathrm{t})$, 40.5 (t), 71.8 (d), 114.6 (t), 125.3 (d), 128.3 (d), 129.9 (d), 130.2 (d), 131.5 (d), 134.5 (d) and 140.3 (d); m / z (CI) 344.1589 $\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+} . \mathrm{C}_{17} \mathrm{H}_{31} \mathrm{BrNO}\right.$ requires 344.1589), 326, 309 and 279.

(all- \boldsymbol{E})-17-Bromoheptadeca-1,5,9,13-tetraen-3-one 42a

Periodinane ($658 \mathrm{mg}, 1.6 \mathrm{mmol}$) was added in one portion to a stirred solution of the tetraenol 41c in dichloromethane (12 cm^{3}) at room temperature, and the solution was then stirred at room temperature under a nitrogen atmosphere for 3 h . After this the mixture was poured onto a stirred solution of sodium thiosulfate in saturated aqueous sodium hydrogen carbonate $\left(10 \% ; 20 \mathrm{~cm}^{3}\right)$ and then stirred vigorously for 15 min . The aqueous layer was separated and extracted with dichloromethane $\left(4 \times 25 \mathrm{~cm}^{3}\right)$ and the combined organic extracts were then dried and evaporated under reduced pressure to leave a white semi-solid. This was purified by column chromatiography on silica using pentane-dichloromethane $(1: 1)$ as eluent to give the enone ($286 \mathrm{mg}, 100 \%$) as a colourless oil; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2984$, 2938, 1711, 1681, 1432, 1240, 1092 and $909 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.90\left(2 \mathrm{H}\right.$, app quin., $\left.J 6.9, \mathrm{BrCH}_{2} \mathrm{CH}_{2}\right), 1.96-2.21$ $\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCH}_{2}\right), 3.33(2 \mathrm{H}, \mathrm{dd}, J 14.3$ and 5.3 , $\left.\mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CO}\right), 3.40\left(2 \mathrm{H}, \mathrm{t}, J 6.7, \mathrm{CH}_{2} \mathrm{Br}\right), 5.35-5.55(4 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}=\mathrm{CH}), 5.55-5.61\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CO}\right), 5.84(1 \mathrm{H}$, $\mathrm{dt}, J 10.0$ and $\left.1.7, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.24(1 \mathrm{H}, \mathrm{dd}, J 17.6$ and 1.7 , $\mathrm{CH}=\mathrm{CH}_{2}$) and $6.39\left(1 \mathrm{H}, \mathrm{dd}, J 17.6\right.$ and $10.0, \mathrm{C} H=\mathrm{CH}_{2}$). Signals observed for the major E isomer: $\delta_{\mathrm{c}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 29.8(\mathrm{t})$, $30.9(\mathrm{t}), 32.3(\mathrm{t}), 32.5(\mathrm{t}), 32.6(\mathrm{t}), 32.7(\mathrm{t}), 33.4(\mathrm{t}), 43.9(\mathrm{t}), 122.1$ (d), 128.3 (d), 128.6 (t), 129.9 (d), 130.2 (d), 131.6 (d), 134.7 (d), 136.0 (d) and 199.9 (s); $m / z(\mathrm{Cl}) 342.1432\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right.$. $\mathrm{C}_{17}{ }_{7} \mathrm{H}_{29} \mathrm{BrNO}$ requires 342.1433), $325\left(\mathrm{MH}^{+}\right), 309,279,255$ and 201.

(all-E)-17-Iodoheptadeca-1,5,9,13-tetraen-3-one 42b

Sodium iodide ($248 \mathrm{mg}, 1.65 \mathrm{mmol}$) was added in one portion to a stirred solution of the tetraenone $\mathbf{4 2 b}(270 \mathrm{mg}, 0.83 \mathrm{mmol})$ in acetone ($12 \mathrm{~cm}^{3}$) at room temperature, and the solution was then heated under reflux for 2 h in a nitrogen atmosphere. It
was cooled and evaporated under reduced pressure to leave a residue which was redissolved in ether ($12 \mathrm{~cm}^{3}$). The solution was washed with aqueous sodium thiosulphate $\left(10 \% ; 25 \mathrm{~cm}^{3}\right)$, and the aqueous layer was separated and extracted with ether $\left(3 \times 25 \mathrm{~cm}^{3}\right)$. The combined extracts were dried and evaporated under reduced pressure to leave the iodide $\mathbf{4 2 b}$ (259 $\mathrm{mg}, 84 \%$) as a pale yellow oil; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3414,3018,2927$, 2851, 1682, 1616, 1441, 1404, 1216, 1097, 969 and $757 ; \delta_{\mathrm{H}}(250$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $1.84\left(2 \mathrm{H}\right.$, app quin., $J 6.9, \mathrm{ICH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.90-2.15 ($10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}$), $3.15\left(2 \mathrm{H}, \mathrm{t}, J 6.9, \mathrm{CH}_{2} \mathrm{I}\right)$, $3.30\left(2 \mathrm{H}, \mathrm{dd}, J 15.2\right.$ and $\left.5.5, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CO}\right), 5.25-5.48(4 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}=\mathrm{CH}), 5.48-5.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{O}\right), 5.81(1 \mathrm{H}, \mathrm{dd}$, $J 10.0$ and $\left.1.5, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.22(1 \mathrm{H}, \mathrm{dt}, J 17.6$ and 1.5 , $\left.\mathrm{CH}=\mathrm{CH}_{2}\right)$ and $6.34\left(1 \mathrm{H}, \mathrm{dd}, J 17.6\right.$ and $\left.10.0, \mathrm{C} H=\mathrm{CH}_{2}\right)$. Signals observed for the major E isomer: $\delta_{\mathrm{c}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.5(\mathrm{t})$, $32.0(\mathrm{t}), 32.3(\mathrm{t}), 32.3(\mathrm{t}), 32.4(\mathrm{t}), 32.8(\mathrm{t}), 32.8(\mathrm{t}), 43.6(\mathrm{t}), 121.8$ (d), 127.8 (d), 128.3 (t), 129.5 (d), 129.9 (d), 131.3 (d), 134.3 (d), 135.7 (d) and $198.5(\mathrm{~s}) ; m / z$ (FAB) $373\left(\mathrm{M}^{+}+\mathrm{H}, 1 \%\right.$). The product was used without further purification.

(all-E)-Cycloheptadeca-3,7,11-trienone 44

A solution of tetraenone $\mathbf{4 2 b}(100 \mathrm{mg}, 0.269 \mathrm{mmol})$ in benzene $\left(1 \mathrm{~cm}^{3}\right)$ was added dropwise over 5 min to a stirred solution of AIBN (10 mg) in degassed benzene ($70 \mathrm{~cm}^{3}$) under reflux in a nitrogen atmosphere. Tributyltin hydride $\left(78 \mathrm{~mm}^{3}, 0.296\right.$ mmol) was added dropwise over 10 min to the refluxing solution and heating under reflux continued for 2 h . The mixture was then cooled to room temperature.

Saturated aqueous potassium fluoride ($20 \mathrm{~cm}^{3}$) was added to the mixture which was then stirred vigorously for 18 h . It was then partitioned between ether $\left(30 \mathrm{~cm}^{3}\right)$ and water $\left(30 \mathrm{~cm}^{3}\right)$, and the aqueous layer was separated and extracted with ether $\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined extracts were dried and evaporated under reduced pressure to leave a residue which was purified by column chromatography on silica using pentanedichloromethane ($2: 1$) as eluent to give the cyclic ketone (27 $\mathrm{mg}, 42 \%$) as a colourless oil; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2924,2852,1715$, 1437, 1358, 1284, 1215, 1095 and $967 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.17-1.43 (4 H, m), 1.53-1.69 (2 H, m), 1.95-2.17 ($10 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}=\mathrm{CHCH}_{2}\right), 2.44\left(2 \mathrm{H}\right.$, app q, $\left.J 6.7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 3.11$ $\left(2 \mathrm{H}, 2 \times \mathrm{d}, J 7.9, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CO}\right)$ and $5.29-5.65(6 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}=\mathrm{CH}) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 23.2(\mathrm{t}), 27.3(\mathrm{t}), 27.9(\mathrm{t}), 31.3$ (t), 31.5 (t), 31.6 (t), 31.9 (t), 32.6 (t), 41.2 (t), 47.2 (t), 122.8 (d), 129.6 (d), $130.3(2 \times \mathrm{d}), 130.5$ (d), $135.0(\mathrm{~d})$ and 210.2 (s); m / z (EI) $246.1980\left(\mathrm{M}^{+} . \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}\right.$ requires 246.1984), $189(4 \%), 161$ (5%), 149 (9%) and 137 (20%).

Acknowledgements

We thank Fisons Pharmaceuticals for a Research Scholarship (to A. J. S.) and Glaxo Group Research Ltd, for a Research Fellowship (to D. S. W.). We also thank Drs J. Dixon (Fisons Pharmaceuticals) and R. F. Newton (Glaxo Group Research Ltd) for their interest.

References

1 G. Pattenden, A. J. Smithies and D. S. Walter, J. Chem. Soc., Perkin Trans. 1, 1995, preceding paper.
2 S. A. Hitchcock and G. Pattenden, Tetrahedron Lett., 1992, 33, 4843 (corrigendum Tetrahedron Lett., 1992, 33, 7448).
3 For preliminary publication see: M. J. Begley, G. Pattenden, A. J. Smithies and D. S. Walter, Tetrahedron Lett., 1994, 35, 2417

4 For some summary of earlier work see: G. Pattenden, 'Polycycle Constructions by Transition Metal Catalysed and Radical Mediated Processes' in Organometallic Reagents in Organic Synthesis, Academic Press, eds. J. H. Bateson and M. B. Mitchell, 1993.
5 For an example of a radical-mediated transannular strategy towards diterpenoid ring systems see: A. G. Myers and K. R. Condroski, J. Am. Chem. Soc., 1993, 115, 7926; J. Am. Chem. Soc., 1995, 117,
3057. For examples of transannular cyclisations of cyclooctenyl radicals leading to polyquinane synthesis see: L. A. Paquette, J. A. Colapret and D. R. Andrews, J. Org. Chem., 1985, 50, 201; J. D. Winkler and V. Sridar, J. Am. Chem. Soc., 1986, 108, 1708; J. D. Winkler and V. Sridar, Tetrahedron Lett., 1988, 29, 6219.

6 C. Ligong, G. B. Gill and G. Pattenden, J. Chem. Soc., Perkin Trans. 1, 1995, following paper.
7 E. J. Enholm, H. Satici and G. Prasad, J. Org. Chem., 1990, 55, 324. 8 For other examples see: A. J. L. Beckwith and K. U. Ingold, in Rearrangements in Ground and Excited States. vol 1, ed. P. de Mayo, Academic Press Inc., New York, 1980; L. K. Montgomery and J. W. Matt, J. Am. Chem. Soc., 1967, 89, 3050; L. K. Montgomery,
J. W. Matt and J. R. Webster, J. Am. Chem. Soc., 1967, 89, 923; Z. Cekovi and R. Saicic, Tetrahedron Lett., 1990, 31, 6085.

9 For recent examples of 3-exo trig cyclisations see: R. C. Denis and D. Gravel, Tetrahedron Lett., 1994, 35, 4531; W-W. Weng and T-Y. Luh, J. Org. Chem., 1993, 58, 5574; W. Zhang and P. Dowd, Tetrahedron Lett. 1992, 33, 7307; M. Journet and M. Melacria, J. Org. Chem., 1994, 59, 718.

Paper 5/03364K
Received 14th June 1995
Accepted 2nd August 1995

